Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

N, N^{\prime}-Bis[1-(pyrazin-2-yl)ethylidene]hydrazine

Abdurrahman Sengül, ${ }^{\mathbf{a}}$ Nevzat Karadayı ${ }^{\mathbf{b} *}$ and Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Science and Literature Faculty, Karaelmas University, TR-67100 Zonguldak, Turkey, and ${ }^{\text {b }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey Correspondence e-mail: nevzatk@omu.edu.tr

Received 18 March 2004
Accepted 19 May 2004
Online 22 June 2004

Molecules of the title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{6}$, contain both a diimine linkage and an $\mathrm{N}-\mathrm{N}$ bond, and assume a planar structure. The compound lies about an inversion centre and there are three intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Supramolecular chemistry based on coordination chemistry is a vast area of current research. A particularly large number of such supramolecular complexes use oligomeric aromatic nitrogen-containing heterocycles as ligands, and the demand for multitopic (bridging) ligands provides a strong impetus for the synthesis of related compounds. Some approaches to the construction of supramolecular systems based on polyazines have been reported recently (Tuna et al., 2003; Hamblin et al., 2002; Matthews et al., 2003). The recent interest in N_{2}-diazinebridged polyfunctional ligands mainly derives from the fact that the nature of the heterocyclic ring and the extent of the double-bond character in the $\mathrm{N}-\mathrm{N}$ bond have been reported to play a crucial role in providing an intramolecular exchange pathway for spin-exchange interactions that are observed in the metal complexes of these ligands (Xu et al., 1997). We report here the crystal structure of N, N^{\prime}-bis[1-(pyrazin-2-yl)ethylidene]hydrazine (hereafter BPYH), in which the two pyrazinylimine binding units are linked directly (no spacer unit) through the imine N atoms.

BPYH
The molecular structure of BPYH is shown in Fig. 1, and relevant bond distances and angles are listed in Table 1. The molecule is essentially planar and has a trans configuration.

The title molecule crystallizes in the E, E conformation, with the methyl groups on opposite sides of the $\mathrm{N}-\mathrm{N}$ bond,

Figure 1
The molecular structure of BPYH, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines show possible hydrogen bonding (Table 2). [Symmetry code: (i) $-x$, $1-y,-z$.]
suggesting conjugation throughout the π systems. This configuration agrees with that commonly found in a number of azine compounds (Kesslen \& Euler, 1999). The N3-N3 ${ }^{\mathrm{i}}$ bond distance $[1.398$ (2) \AA; symmetry code: (i) $-x, 1-y,-z]$ is the same, within experimental error, as that found in free 2,4dinitrophenylhydrazine [1.405 (6) \AA; Okabe et al., 1993], but is slightly shorter than that in hydrazine (1.449 \AA; Kohata et al., 1982), which suggests the existence of some double-bond character in the azine $\mathrm{N}-\mathrm{N}$ bond.

The planarity in BPYH may arise as a result of several effects. Firstly, the N3 \cdots H6 distance is 2.7245 (18) \AA, slightly less than the sum of the van der Waals radii for H and N atoms ($2.75 \AA$), suggesting a possible interaction between these two atoms. The stereochemical influence of the nitrogen lone pairs is reflected in the bond angle; the $\mathrm{C} 5-\mathrm{N} 3-\mathrm{N} 3{ }^{\mathrm{i}}$ angle [113.64 (13) ${ }^{\circ}$] is significantly below the ideal $s p^{2}$ value of 120°, a consequence of repulsion between the nitrogen lone pairs and the adjacent bonds.

The $\mathrm{C}=\mathrm{N}-\mathrm{N}=\mathrm{C}$ linkage is planar. The $\mathrm{C} 5-\mathrm{N} 3$ bond [1.2816 (16) \AA] is longer than the mean distance $(1.273 \AA)$ for related azine compounds (Kesslen \& Euler, 1999; Hagen et al., 1977; Chen et al., 1994), which, together with the short $\mathrm{N}-\mathrm{N}$ bond, implies a small degree of delocalization through the azine π system. The C1-N1 bond distance $[1.3281$ (16) \AA] is shorter than the distance [1.335 (2) \AA] reported by Zhang et al. (2001). The plane of the $\mathrm{C} 1 / \mathrm{C} 5 / \mathrm{N} 3 / \mathrm{C} 6$ group is rotated by $3.62(1)^{\circ}$ from the plane of the $\mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{N} 2 / \mathrm{C} 4$ ring. The structure arises from a combination of packing effects, steric effects and very weak intramolecular hydrogen contacts; the molecule contains three $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2).

Experimental

BPYH was synthesized by the reaction of 2-acetylpyrazine with hydrazine hydrate in a refluxing ethanol/ HCl solution, using a procedure similar to that reported for the synthesis of 2-pyridinealdehydeazine by Kesslen \& Euler (1999). Crystallization was performed twice (from ethanol and acetonitrile), yielding orange crystals suitable for X-ray analysis. A single crystal was selected, mounted on a glass fibre using epoxy cement and used for data collection.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{6}$
$M_{r}=240.28$
Monoclinic, $P 2_{1_{1}} / n$
$a=4.4395$ (7) \AA
$b=7.4724$ (7) \AA
$c=17.972$ (3) A
$\beta=91.304(13)^{\circ}$
$V=596.04(15) \AA^{3}$
$Z=2$
$D_{x}=1.339 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3509
reflections
$\theta=2.3-28.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, pale yellow
$0.50 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω scans
4249 measured reflections
1174 independent reflections
877 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.112$
$S=1.01$
1174 reflections
96 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& R_{\mathrm{int}}=0.086 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-5 \rightarrow 5 \\
& k=-9 \rightarrow 9 \\
& l=-22 \rightarrow 22
\end{aligned}
$$

$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0611 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{\circ} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.090 (14)

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 4$	$1.391(2)$	$\mathrm{C} 5-\mathrm{N} 3$	$1.2816(16)$
$\mathrm{C} 1-\mathrm{C} 5$	$1.4841(18)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.491(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$	$117.37(12)$	$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6$	$118.82(11)$
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 5$	$121.87(11)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$116.02(13)$
$\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 1$	$114.94(12)$	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 3$	$116.02(13)$
$\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 6$	$126.24(12)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{N} 3$	$176.64(12)$	$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6$	$176.14(14)$

The H atoms bonded to atom C 6 were refined as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.5 U_{\text {eq }}(\mathrm{C})$. All other H atoms were refined isotropically; the $\mathrm{C}-\mathrm{H}$ bond distances are in the range 0.920 (19)-0.971 (17) \AA.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s)

Table 2
Hydrogen-bonding and short-contact geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{~N} 1$	0.96	2.63	$2.8173(19)$	91
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~N} 3$	$0.953(17)$	$2.449(17)$ C6-H6A $\mathrm{l} \mathrm{N}^{\mathrm{i}}$	0.96	2.31

Symmetry code: (i) $-x, 1-y,-z$.
used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported financially by the Zonguldak Karaelmas University, Turkey (AFP project No. 2002-13-0208).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ1007). Services for accessing these data are described at the back of the journal.

References

Chen, G. S., Anthamatten, M., Barnes, C. L. \& Glaser, R. (1994). Angew. Chem. Int. Ed. Engl. 33, 1081-1083.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hagen, K., Bondybey, V. \& Hedberg, K. (1977). J. Am. Chem. Soc. 99, 13651368.

Hamblin, J., Jackson, A., Alcock, N. A. \& Hannon, M. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1635-1641.
Kesslen, E. C. \& Euler, W. B. (1999). Chem. Mater. 11, 336-340.
Kohata, K., Fukuyama, T. \& Kuchitsu, K. (1982). J. Phys. Chem. 86, 602606.

Matthews, C. J., Onions, S. T., Monata, G., Davis, L. J., Heath, S. L. \& Price, D. J. (2003). Angew. Chem. Int. Ed. 42, 3166-3169.

Okabe, N., Nakamura, T. \& Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Tuna, F., Hamblin, J., Jackson, A., Clarcson, G. \& Hannon, M. J. (2003). Dalton Trans. pp. 2141-2148.
Xu, Z., Thompson, L. K. \& Miller, D. O. (1997). Inorg. Chem. 36, 3985-3995.
Zhang, J., Liu, Q., Xu, Y., Zhang, Y., You, X. \& Guo, Z. (2001). Acta Cryst. C57, 109-110.

